机器学习

机器学习和模式识别之间有什么区别?

用非常简单的语言来说,模式识别是一种问题,而机器学习是一种解决方案。模式识别与人工智能和机器学习密切相关。模式识别是机器学习的工程应用。机器学习处理可以从数据中学习的系统的构建和研究,而不是仅遵循明确编程的指令,而模式识别是对数据中模式和规律性的识别。

解说:机器学习、监督学习、非监督学习、强化学习、深度学习、迁移学习

机器学习的主要任务:分类(classification):将实例数据划分到合适的类别中。回归(regression):主要用于预测数值型数据。机器学习可以分为三种形式:监督学习、非监督学习、强化学习。

人工智能和机器学习是影响融入移动应用开发的?

近年以来,计算机技术的发展越来越快,人类的生活开创了一个新的时代—开发强大的计算机系统,通过使用适当的设备,将其移动应用程序实施到全球所有垂直领域,无论是医学,教育,还是商业等等。

深度学习和传统机器学习的差别

是否需要人工构造特征,这应该是深度学习和传统机器学习的最明显的差异。feature engining是传统机器学习中的一个重要组成部分,sift,hog,wavelet等都是解决如何描述数据的问题。深度学习兴起后,feature engining的研究几乎停滞,而end-to-end成为一个新兴的研究方向。

澳洲幸运10开奖结果 幸运飞艇官网 极速快乐8 三分快3 贵州快3走势 北京赛车pk10玩法 极速3分彩 上海11选5开奖 极速3分彩 欢乐生肖